Download

Abstract

Multimodal Argument Mining (MAM) is a recent area of research aiming to extend argument analysis and improve discourse understanding by incorporating multiple modalities. Initial results confirm the importance of paralinguistic cues in this field. However, the research community still lacks a comprehensive platform where results can be easily reproduced, and methods and models can be stored, compared, and tested against a variety of benchmarks. To address these challenges, we propose MAMKit, an open, publicly available, PyTorch toolkit that consolidates datasets and models, providing a standardized platform for experimentation. MAMKit also includes some new baselines, designed to stimulate research on text and audio encoding and fusion for MAM tasks. Our initial results with MAMKit indicate that advancements in MAM require novel annotation processes to encompass auditory cues effectively.


Citation

Eleonora Mancini, Federico Ruggeri, Stefano Colamonaco, Andrea Zecca, Samuele Marro, and Paolo Torroni. 2024. MAMKit: A Comprehensive Multimodal Argument Mining Toolkit. In Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024), pages 69–82, Bangkok, Thailand. Association for Computational Linguistics.

@inproceedings{mancini-etal-2024-mamkit,
    title = "{MAMK}it: A Comprehensive Multimodal Argument Mining Toolkit",
    author = "Mancini, Eleonora  and
      Ruggeri, Federico  and
      Colamonaco, Stefano  and
      Zecca, Andrea  and
      Marro, Samuele  and
      Torroni, Paolo",
    editor = "Ajjour, Yamen  and
      Bar-Haim, Roy  and
      El Baff, Roxanne  and
      Liu, Zhexiong  and
      Skitalinskaya, Gabriella",
    booktitle = "Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)",
    month = aug,
    year = "2024",
    address = "Bangkok, Thailand",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.argmining-1.7/",
    doi = "10.18653/v1/2024.argmining-1.7",
    pages = "69--82",
    abstract = "Multimodal Argument Mining (MAM) is a recent area of research aiming to extend argument analysis and improve discourse understanding by incorporating multiple modalities. Initial results confirm the importance of paralinguistic cues in this field. However, the research community still lacks a comprehensive platform where results can be easily reproduced, and methods and models can be stored, compared, and tested against a variety of benchmarks. To address these challenges, we propose MAMKit, an open, publicly available, PyTorch toolkit that consolidates datasets and models, providing a standardized platform for experimentation. MAMKit also includes some new baselines, designed to stimulate research on text and audio encoding and fusion for MAM tasks. Our initial results with MAMKit indicate that advancements in MAM require novel annotation processes to encompass auditory cues effectively."
}