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Disruptive situations are emotionally-charged events diverging from ordinary behavior, like people fighting or 
screaming. Public transports are one type of social environment where disruptive situation may occur, and 
their timely detection may bring significant improvements to people’s safety. Current approaches to disruptive 
situation detection, typically based on CCTVs, do not take the emotional dimension into account. Conversely, we 
propose to frame such a problem as a speech emotion recognition task.

To validate our hypotheses, we carry out an extensive experimental study focusing on the development of a model 
characterized by speaker/gender independence, robustness to noise, and robustness against multiple voices. We 
investigate a variety of audio features, classifiers, datasets, and data augmentation methods in an effort to define 
effective ways to address this under-investigated yet socially significant problem. Our experiments show that the 
proposed systems attain an F1 score of over 90% on the disruptive class, even when introducing noisy elements 
such as environmental noise or multiple overlapping voices. This robust performance is achieved with datasets 
characterized by speaker variability, gender diversity, and varying number of samples. Such promising results 
indicate that framing disruptive situation detection as a speech emotion recognition task could pave the way to 
the adoption of new types of intelligent systems with a positive impact on public safety.
1. Introduction

Recent developments in Artificial Intelligence (AI) led to the spread 
of innovative technologies specifically aimed at increasing safety. 
Application domains include domestic violence (Roa et al., 2018), 
health (Beltrán et al., 2019), autonomous vehicles (Wang et al., 2020) 
and public transports (Laffitte et al., 2016). These technologies brought 
quality-of-life improvements in private and public environments. In this 
context, we aim to devise a system for disruptive situation detection on 
public transport based on speech.1 Public transport is essential, espe-

cially in urban areas where it is relied upon by millions of people daily. 
Unfortunately, it is not uncommon for disruptive situations, such as 
verbal altercations or physical assaults, to occur on public transport. 
These events create discomfort among passengers and, more signifi-

cantly, pose a safety risk. Therefore, it is crucial to develop methods 
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for detecting and preventing them. This problem, with a strong social 
impact, has not yet attracted the attention it deserves. Moreover, those 
who addressed it so far mostly framed it as the detection of scream and 
shouted speech (Laffitte et al., 2016). However, disruptive behavior 
is not necessarily associated with screaming or shouting. On the con-

trary, relevant scenarios may include passengers threatened quietly or 
paralyzed by fear.

The problem is especially challenging because the typical public 
transport environments are noisy and crowded with people of different 
genders and nationalities. Hence, issues to be addressed include mul-

tilingualism, robustness to environmental noise, presence of multiple 
overlapping voices, and actor- and gender-independence.2 Finally, the 
lack of real-world data makes training of machine learning models even 
more challenging and hampers a complete and fair validation of any 
system. Given the many variables, we restrict the scope of our analysis 
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to robustness to noise, robustness against multiple voices, and actor-

/gender-independence, leaving multilingualism to future investigation. 
Following a practice adopted in psychological science of categorizing 
emotions into positive and negative (An et al., 2017, Pekrun, 2006, Pos-

ner et al., 2005), in agreement with domain experts, we hypothesize 
that disruptive situations are characterized by the prevalence of a well-

identified spectrum of emotions, such as anger, sadness and fear. Under 
this assumption, the detection of disruptive situations becomes akin to a 
Speech Emotion Recognition (SER) task.

Our starting point was an extensive analysis of the datasets for SER. 
It turned out that, with few exceptions (Oflazoglu & Yildirim, 2013, 
Sultana et al., 2021, Wang et al., 2014, Zhalehpour et al., 2017), al-

most all such datasets are in English. We thus decided to conduct our 
experiments in English. We selected four popular datasets, assigning 
samples to training, validation, and test splits so as to guarantee actor-

and gender-independence. Furthermore, we designed a simple but ef-

fective data-augmentation strategy to deal with the limited number of 
training examples and the presence of environmental noise in the do-

main of interest. Our experimental analysis includes the evaluation of 
several audio features, classifiers, and datasets. Furthermore, we test 
our models for robustness against noise and in the presence of mul-

tiple overlapping voices. These aspects hold particular significance as 
the existing research has mainly focused on a specific kind of disrup-

tion that leads to screams (Laffitte et al., 2016). In contrast, real-world 
disruption scenarios are notably multifaceted. Therefore, investigations 
aimed at developing intelligent systems applicable within broader and 
less constrained contexts constitute a novel and valuable contribution. 
Additionally, we test the models in an ensemble setting. Our results sug-

gest that the current technology seems adequate for the introduction of 
disruptive situation detection systems with the potential to benefit im-

portant social environments.

The code, datasets, and a working stand-alone prototype application 
developed for this study are publicly available.3

To summarize, our contributions are:

• a novel way to frame disruptive situation detection as an SER prob-

lem;

• a critical analysis of existing datasets for this task;

• an extensive empirical study designed to validate our hypotheses 
under relevant dimensions, such as speaker and gender variance, 
and presence of noise and multiple overlapping voices on four dif-

ferent datasets;

• a set of classification models and methods for data augmentation.

The structure of the paper is the following. We survey related work 
in Section 2. In Sections 3 and 4, we describe the datasets and the 
methodology. We discuss our experimental results in Section 5, and 
conclude in Section 6.

2. Related work

This section reviews related methods, architectures, and data.

Disruptive Situation Detection.

The problem of detecting disruptive situations on public transport 
from audio is scarcely addressed in the literature. One notable effort 
is presented by Laffitte et al. (2016), who address the problem as the 
detection of scream and shouted speech. However, we are the first ones 
to frame it as an SER task.

Problem Formulation.

An SER system is often depicted as comprising two core phases (Mus-

taqeem & Kwon, 2021). The first phase concerns the selection of robust, 
discriminative, and salient audio features, such as Mel-Frequency-

Ceptrum coefficients (MFCCs), Chroma, Zero-Crossing-Rate (ZRC), 
2

3 https://github .com /helemanc /ambient -intelligence.
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Root-Mean-Square-Energy (RMSE) and Log-Mel Spectrogram. The sec-

ond phase regards the definition of adequate classification methods. 
One of the trends in current literature employs classic methods like 
Support Vector Machines (SVMs) (Aouani & Ayed, 2020, Iqbal, 2021), 
Convolutional Neural Networks (CNNs), Long-Short Term Memory Net-

works (LSTMs) and Hidden Markov Models (HMMs) (An & Ruan, 2021, 
Chourasia et al., 2021, Fu et al., 2020, de Pinto et al., 2020, Venkatara-

manan & Rajamohan, 2019).

Current approaches to SER follow two problem formulations: cate-

gorical (Ekman, 1992, 1989), and dimensional (Posner et al., 2005). In 
the first, emotions define discrete classes for multi-class or multi-label 
classification. Generally, such discrete classes refer to Ekman’s six basic 
emotions (Ekman, 1999): sadness, happiness, fear, anger, disgust, and 
surprise (Akçay & Oguz, 2020). Conversely, in the dimensional task for-

mulation, emotions are defined as small numerical values over distinct 
emotion latent dimensions (e.g., valence and arousal) (Akçay & Oguz, 
2020, Yang & Chen, 2012). The dimensional model accurately captures 
certain complex emotional states. However, it fails to discriminate be-

tween emotions such as fear and anger and makes it hard to characterize 
an emotion such as surprise, which may have a positive or negative 
valence depending on the circumstances (Akçay & Oguz, 2020). Since 
these emotions are key to the correct classification of disruptive situa-

tions, for the purposes of this study, we frame SER as a binary classifi-

cation task, following a categorical approach.

Architectures.

Among other works that follow a categorical approach, one primary 
line of research is based on CNNs to extract spatial features. Notable 
examples are (de Pinto et al., 2020) and (Chourasia et al., 2021), who 
propose a 1D-CNN classifier with MFCCs audio features achieving good 
accuracy performance. Fu et al. (2020) address it with end-to-end train-

ing of an attention-based CNN-BLSTM model. Meng et al. (2019), as 
well as Zhao et al. (2019) integrate CNNs and LSTM networks to pro-

pose a novel architecture for emotion detection. Pandey et al. (2022)

introduce a deep neural network that combines convolutional layers 
and LSTM. Meanwhile, Shahin et al. (2022) undertake a comprehensive 
evaluation of their CNN and LSTM-based model against conventional 
classifiers across various corpora, including RAVDESS and CREMA-D. 
They show their model’s state-of-the-art performance across all datasets. 
Furthermore, Nagase et al. (2022) employ a deep neural network fea-

turing convolutional and LSTM layers for emotion recognition. No-

tably, they propose the application of label smoothing as a technique 
to mitigate overfitting stemming from mislabeled information. Further-

more, An and Ruan (2021) use two parallel CNNs for spatial features 
and a transformer encoder network to extract temporal features. They 
also design a data augmentation method using Additive White Gaus-

sian Noise (AWGN). In contrast, we seek the integration of domain-

specific environmental noise. Andayani et al. (2022) recently propose 
to integrate LSTM and transformer architectures in order to capture 
long-term dependencies in speech signals, yielding superior accuracy. 
Mocanu and Tapu (2022) formulate a 2D CNN coupled with deep met-

ric learning for emotion recognition. Their model demonstrates notable 
efficacy on the RAVDESS and CREMA-D datasets. These studies collec-

tively contribute to advancing emotion detection through the fusion of 
convolutional and LSTM architectures and other techniques.

Another line of research primarily adopts SVM classifiers. Aouani 
and Ayed (2020) adopt several audio features and an autoencoder to 
extract more advanced features to be fed into the SVM classifier. Fur-

thermore, Iqbal (2021) tackles SER using SVM and MFCCs on the TESS 
dataset, reaching satisfactory results.

In our study, we opt to start with simple CNNs and SVMs classi-

fiers. This decision is driven by our desire to establish a robust proof of 
concept for our hypotheses, leaving the exploration of more advanced 
methods for future investigations. Furthermore, our commitment to 
lightweight models harmonizes with the practical integration of the de-

ployed models into edge devices, necessitating the adoption of shallow 

architectures.

https://github.com/helemanc/ambient-intelligence
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Audio Features.

Other approaches have been recently proposed for feature extrac-

tion. Patel et al. (2022) study the impact of an autoencoder architecture 
to extract high-level features for SER, achieving good performance on 
the RAVDESS and TESS datasets. Chattopadhyay et al. (2020) use Linear 
Predictive Coding (LPC) in conjunction with MFCCs. Additionally, they 
propose a novel application of Manta Ray optimization that achieves 
state-of-the-art performance on SAVEE and EMO-DB.

Venkataramanan and Rajamohan (2019) carry out an extensive 
comparison of various approaches for SER. In particular, they study 
different audio features, such as Log-Mel Spectrogram and MFCCs, in 
combination with several neural architectures like LSTMs, CNNs, and 
HMMs. They conclude that the choice of audio features has more im-

pact on model performance than model complexity. Chen et al. (2023)

incorporate a connection attention mechanism to effectively integrate 
frame-level manual features, utterance-level deep features. Liu et al. 
(2023) improve the imbalance of the sample distribution among emo-

tional categories and increase feature diversity by employing balanced 
augmented sampling on triple-channel log-Mel spectrograms, imple-

menting time and frequency-domain filters, and achieving remark-

able SER performance on datasets like IEMOCAP and MSP-IMPROV. 
Moreover, Singh et al. (2023) contribute by introducing constant-Q 
transform-based modulation spectral features (CQT-MSF), offering 
emotion-specific representations that outperform conventional mel-

scale spectrograms and modulation features, notably on datasets like 
Berlin EmoDB and RAVDESS. In our study, we opt for the use of MFCCs 
as our choice of audio representation, primarily to ascertain if this 
compact spectral feature representation can deliver good performance, 
reserving the exploration of more sophisticated audio representation 
techniques for future investigations.

Multilingualism.

Currently, there is a growing emphasis on the exploration of meth-

ods and techniques for dealing with multilingualism. To address the 
multilingual aspect of emotion recognition, Sultana et al. (2022) intro-

duce a system based on CNN and LSTM networks. They perform transfer 
learning between the RAVDESS dataset and a second one in the Bangla 
language. Gerczuk et al. (2023) employ a transfer learning approach 
with a diverse multi-corpus database encompassing 26 freely available 
corpora. This corpus, called EmoSet, encompasses 84,181 multi-lingual 
audio recordings with a combined duration exceeding 65 hours. Their 
approach, leveraging various convolutional neural network architec-

tures and spectrograms derived from original audio recordings, show-

cases promise in overcoming the challenges of multilingualism.

As emphasized in Section 1, our current analysis is centered on ro-

bustness against noise, multiple voices, and actor/gender independence, 
with multilingualism investigations reserved for future research. There-

fore, we intend to explore the aforementioned techniques in the future 
to address challenges related to the presence of multilingualism in pub-

lic transport environments.

Data.

Besides methods and architectures, another point that deserves at-

tention is the data and how it has been used. Several works randomly 
split data among train, validation, and test splits. Random splitting may 
lead to biased situations in which an actor is shared among different 
splits. Such a phenomenon can alter experimental scenarios, yielding 
optimistic results that do not truly evaluate properties like actor in-

dependence. Moreover, as a side effect, an unbalanced gender distri-

bution concerning actors can further bias an SER classifier. Previous 
work tackled this problem only partially by using a leave-one-speaker-

out validation (Bitouk et al., 2010, Cao et al., 2015, Fu et al., 2020, 
Sato & Obuchi, 2007) or by dividing the data by gender (Zhu et al., 
2017). Huang et al. (2016) suggest a feature normalization method for 
speaker-independent SER. However, in our opinion, the evidence for 
the generality of the latter approach is still limited. To guarantee ac-
3

tor independence and a rigorous evaluation, we split our data following 
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Table 1

Emotions for each selected dataset concerning SER.

RAVDESS TESS SAVEE CREMA-D

fear ✓ ✓ ✓ ✓
disgust ✓ ✓ ✓ ✓
neutral ✓ ✓ ✓ ×
calm ✓ × × ×
happiness ✓ ✓ ✓ ✓
sadness ✓ ✓ ✓ ✓
surprise ✓ ✓ ✓ ×
angry ✓ ✓ ✓ ✓

Vogt and André (2006) and Venkataramanan and Rajamohan (2019)

(see Section 4.1.3 for details).

3. Data

This section provides details on the data employed in our experi-

ments.

Several speech datasets have been created in a wide variety 
of languages for developing emotional systems that work on au-

dio (Swain et al., 2018). These datasets are generally divided into 
three categories: acted (or simulated), invoked (or elicited) and sponta-

neous (Akçay & Oguz, 2020).

Motivated by the lack of SER datasets in the public transport 
domains, we focus on acted speech datasets where actors are na-

tive English speakers. In particular, we select the following datasets: 
RAVDESS (Livingstone & Russo, 2018), TESS (Pichora-Fuller & Dupuis, 
2020), SAVEE (Haq & Jackson, 2010) and high-intensity data part of 
CREMA-D (Cao et al., 2014).4 We choose these datasets because they 
are standardized collections of emotions, allowing a straightforward 
comparison of classification results (Abbaschian et al., 2021). More-

over, unlike invoked or spontaneous datasets, acted datasets allow easier 
modeling and detection of emotions since (i) each audio file is char-

acterized by a specific emotion5; (ii) the amount of different emotions 
found in these corpora is higher than in invoked and in spontaneous; (iii) 
recordings are not significantly altered by environmental noise. The ab-

sence of environmental noise also eliminates the need for a denoising 
pre-processing phase which might cause information loss. Nevertheless, 
we are aware that the selected speech datasets could not represent a re-

alistic domain-specific scenario. For instance, as simulated datasets have 
synthesized emotions, models tend to overfit around emotions differ-

ently from day-to-day conversations (Abbaschian et al., 2021).

One of our primary objectives is to implement a classification model 
that is not biased towards one of the two genders. Therefore, we pay 
particular attention to gender distribution. We observe that RAVDESS 
and CREMA-D present a balanced number of female and male actors. 
In particular, RAVDESS has 12 female and 12 male actors. Similarly, 
CREMA-D has 48 male actors and 43 female actors. In contrast, TESS 
contains recordings from male actors only, whereas SAVEE has record-

ings from female actors only.

Not all datasets contain the same emotion categories (see Table 1). 
The average recording duration ranges from two to five seconds. Other 
aspects, such as the sample rate, the dB amplitude, and the RMSE are 
specific to each dataset. For instance, RAVDESS and CREMA-D have 
substantial differences in audio quality, since recordings in CREMA-D 
present more echoes and volume variations.

Concerning the number and variety of samples, RAVDESS is one of 
the datasets with the largest amount of recordings when considering 

4 For CREMA-D, we consider only the high intensity data since we deemed the 
quality of the other parts not sufficient for our purposes.

5 The emotions do not vary dynamically during the course of speech and there 

is no concurrence of different emotions.
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Table 2

Distribution of emotions, genders, and actors for each dataset for SER. We differentiate the 
number of samples in training, validation, and test splits with the / symbol.

RAVDESS (R) TESS (T) SAVEE (S) CREMA (C)

disruptive D 640 / 64 / 64 1000 / — / 800 120 / 60 / 60 256 / 48 / 48

disgust 160 / 16 / 16 200 / — / 200 30 / 15 / 15 64 / 12 / 12

sadness 160 / 16 / 16 200 / — / 200 30 / 15 / 15 64 / 12 / 12

angry 160 / 16 / 16 400 / — / 200 30 / 15 / 15 64 / 12 / 12

fear 160 / 16 / 16 200 / — / 200 30 / 15 / 15 64 / 12 / 12

non-disruptive ND 560 / 56 / 56 400 / — / 600 120 / 60 / 60 64 / 12 / 12

happy 160 / 16 / 16 — / — / 200 30 / 15 / 15 64 / 12 / 12

neutral 240 / 24 / 24 200 / — / 200 60 / 30 / 30 — / — / —

surprise 160 / 16 / 16 200 / — / 200 30 / 15 / 15 — / — / —

Total samples 1200 / 120 / 120 1400 / — / 1400 240 / 120 / 120 320 / 60 / 60

Female actresses 10 / 1 / 1 1 / — / 1 — / — / — 32 / 6 / 6

Male actors 10 / 1 / 1 — / — / — 2 / 2 / 2 32 / 6 / 6

Total actors 20 / 2 / 2 1 / — / 1 2 / 2 / 2 64 / 12 / 12
multiple actors (see Table 2). Additionally, RAVDESS contains an equal 
and adequate number of actors for the definition of gender- and actor-

independent classification models. Lastly, recordings in RAVDESS are 
not particularly subject to environmental noise that might downgrade 
audio quality. For these reasons, we consider RAVDESS as the reference 
dataset of our experimental setting.

4. Method

This section provides an in-depth exploration of our research 
methodology, encompassing pre-processing, classifiers, and the exper-

imental framework. Within Pre-Processing (Section 4.1), we delve into 
data loading and equalization (Section 4.1.1), labels aggregation (Sec-

tion 4.1.2), data splitting (Section 4.1.3), data augmentation (Section 
4.1.4), cut and pad techniques (Section 4.1.5), as well as feature ex-

traction (Section 4.1.6). In Classifiers (Section 4.2) and Experimental 
Setting (Section 4.3), we describe in detail architectures, experiments 
and model calibration.

4.1. Preprocessing

4.1.1. Data loading and equalization

We load and resample all audio files through librosa (McFee et 
al., 2015) using a sample rate of 16 kHz, which is the minimum sample 
rate of the original sources.

4.1.2. Labels aggregation

We frame the problem as the binary classification of disruptive (D) 
and non-disruptive (ND) emotions. We consider disruptive situations in 
the public transport domain and make assumptions about which emo-

tions (among those available in the dataset) characterize them. There-

fore, we split the emotions as follows:

• Disruptive Emotions (D): anger, sadness, fear, disgust;

• Non-Disruptive Emotions (ND): neutral, happiness, surprise, calm.

As can be seen in Table 2, CREMA-D turns out to be unbalanced 
after aggregating labels. This imbalance towards the D-class is caused by 
the fact that CREMA-D contains only happiness among all the emotions 
belonging to the ND class.

4.1.3. Data splitting

Existing work on SER (Padi et al., 2020, Patel et al., 2022, de Pinto 
et al., 2020) defines train, validation, and test sets via random split-

ting. Nonetheless, such an approach leads to a biased model evalua-

tion (Venkataramanan & Rajamohan, 2019) since the same actor can 
4

appear in multiple splits. To better create and evaluate a truly actor-
and gender-independent model, we define dataset splits according to the 
following criteria: (i) splits should have a balanced amount of male and 
female actors; (ii) each actor can only appear in one split.6 The final 
distribution of labels, actors, and genders across the three splits is re-

ported in Table 2. As can be noticed in Table 2, TESS has two splits 
since it contains two actors only.

4.1.4. Data augmentation

Additive noise interference is a significant obstacle to the practical 
use of SER systems (Tiwari et al., 2020, Zhang et al., 2018). To over-

come these issues, there exist three main approaches: at the signal level 
(e.g., using a denoising module or a voice activity detector), at the fea-

ture level (e.g., enhancement through Wiener filtering), at the model 
level (e.g., training a model on noise-corrupted data). We rely on the 
latter and propose a data augmentation strategy to simultaneously deal 
with the limited number of training samples and the presence of typi-

cal environmental noises associated with the public transport domain. 
Since the introduced datasets for SER are defined in a noiseless envi-

ronment, we create new synthetic training data by injecting domain-

specific noise. In particular, noise-corrupted data is created based on 
three samples7: (i) a recording of the inside of a train; (ii) a recording 
of a freight train with squeaky wheels passing by; (iii) a recording of 
a small crowd of children playing. We create a noise-corrupted version 
of a recording by overlaying a randomly chosen noise sample on a ran-

domly chosen temporal position. The noise’s volume is set to 2 dB less 
than each sample’s volume to keep the recorded voice audible. We ap-

ply this technique to the training set of each dataset and merge the new 
samples with the original ones, resulting in six augmented training sets 
with twice the number of training samples.

Another form of data augmentation is the combination of audio sam-

ples to simulate the presence of multiple voices and evaluate our system 
in such conditions. To simulate this scenario, we select combinations of 
two, five, and ten audio files from each test set of each dataset, over-

laying them for each of the two categories being analyzed (disruptive 
and non-disruptive). We overlay the samples belonging to each combi-

nation. The resulting distribution of samples is reported in Table 7. We 
make sure that each sample is contained in only one combination.

4.1.5. Cut and pad

We trim and pad recordings to make them uniform. We fix the audio 
duration of recordings to 5 seconds. Shorter recordings are padded us-

6 It has been recently observed that gender imbalance in data could lead to 
decreased ASR performance on the least represented gender category (Garnerin 
et al., 2021).
7 The audio files were retrieved from the Youtube and Soundible platforms.
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Fig. 1. CNN architecture. The labels in the figure follow the format of n_filters@FxT, where n_filters represents the number of filters applied, F denotes the number of 
features, and T is the number of timesteps.
ing the audio file’s median value, while longer ones are truncated. The 
sampling rate for recordings is set to 16 kHz. Thus, each recording is 
represented by 80000 samples.

4.1.6. Features

We extract Mel-Frequency-Cepstral Coefficients (MFCCs) (Guðnason 
& Brookes, 2008) and Root-Mean-Square-Energy (RMSE) (Er, 2020) for 
each frame to represent recordings. The number of frames is obtained 
by dividing the number of samples by the hop length. We set the hop 
length to 512,8 resulting in 157 𝑡 time-steps per recording. MFCCs are 
then represented as a 𝑡 × 𝑐 matrix, where 𝑐 is the number of coefficients. 
Conversely, RMSE is a 𝑡-dimensional vector.

Regarding MFCCs, we experiment with the first 13 and 26 𝑐 co-

efficients. In both cases, we remove the first MFCC component since 
it carries little information (Fahmy, 2010), thus obtaining 12 and 25 
MFCCs. RMSE is concatenated to MFCCs when considered as an addi-

tional feature. We normalize and standardize the MFCCs and RMSE of 
each input example at the dataset level to facilitate learning.9

Lastly, some machine learning models (e.g., SVM) require mono-

dimensional inputs. In this case, we reduce MFCCs by averaging over 
the 𝑡 dimension.

4.2. Classifiers

Following previous work on SER, we employ SVM10(Cortes & Vap-

nik, 1995) and CNN (Goodfellow et al., 2016) as classifiers. These are 
light-weight classifiers with square or linear computational complex-

ity (Bottou et al., 2007, Vaswani et al., 2017), routinely used in edge 
devices. Our CNN consists of three blocks. The first two blocks comprise 
of a 1-D convolutional layer with 5×5 kernel and ReLU activation func-

tion, followed by 1-D pooling with 4 × 4 kernel and dropout layers. The 
dropout rate is set to 0.6 for the first block and 0.5 for the second one. 
The final block comprises two dense layers for classification. In Figure 
1, we present an overview of our CNN structure. We train each CNN 
model with binary cross-entropy loss function and Adam (Kingma & Ba, 
2015) optimizer.

8 We relied on librosa (McFee et al., 2015) default’s hop length.
9 All data were processed using the mean and standard deviation values com-

puted on the respective training set.
5

10 We relied on the libsvm library (Chang & Lin, 2011).
4.3. Experimental setting

We devise four experiments to assess the effectiveness of audio fea-

tures, machine learning models, and data augmentation techniques for 
SER:

a) Disruptive Situation Detection. We train and evaluate SVM and 
CNN models on selected datasets for SER.

b) Gender Independence. We assess the robustness and potential 
gender bias of the best-performing models developed for Disruptive 
Situation Detection. In this experiment, the focus is on evaluating 
the models’ performance when tested on datasets containing actors 
of the same gender.

c) Noise Robustness. We evaluate the noise robustness of employed 
classifiers on a noise-corrupted RAVDESS dataset version.

d) Multiple Voices. We evaluate the effectiveness of our approach for 
detecting emotional changes in speech with multiple overlapping 
voices. To construct this setting, we overlay groups of audio files 
with identical labels (either disruptive or non-disruptive).

e) Ensemble. We evaluate the learning stability of employed classi-

fiers by considering an ensemble of the best configurations.

4.3.1. Model calibration

We calibrate each model hyper-parameter set via a randomized 
search. We evaluate models via a three-fold cross-validation routine. For 
the SVM model, we calibrate the kernel (𝑅𝐵𝐹 , 𝐿𝑖𝑛𝑒𝑎𝑟) and the C regu-

larization (0.1, 1.0, 10, 100). Regarding the CNN model, we calibrate the 
weight initializer (uniform, LeCun, Glorot, He normal, He uniform), the 
batch size (4, 8, 16) and the optimizer learning rate (10−3, 10−4, 5 ⋅10−5). 
All the remaining hyper-parameters are set to their default values. We 
regularize models via early stopping regularization during training. We 
set early-stopping patience to 45. Models are early stopped on the vali-

dation loss, except TESS, since no validation set is defined. In this case, 
models are early stopped on the training loss.

4.3.2. Disruptive situation detection

Our primary goal is to analyze how the choice of data, audio fea-

tures, and classification models might affect an SER system. In addition 
to RAVDESS, TESS, SAVEE, and CREMA-D, we create new datasets 
by combining these datasets and generating noise-corrupted examples 
(Section 4.1.4). A summary of the described approach is shown in Ta-
ble 3. Overall, we consider 4 feature sets, 2 classifiers, and 8 datasets, 
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Table 3

Summary of features, classifiers, and training sets used for disruptive 
situation detection.

Features Classifiers Training Sets

12 MFCCs RAVDESS Augmented RAVDESS

12 MFCCs + RMSE CNN TESS Augmented TESS

25 MFCCs SVM SAVEE Augmented SAVEE

25 MFCCs + RMSE CREMA-D Augmented CREMA-D

totaling 64 different combinations. Since this experiment is based on 
noiseless test sets, its results will represent an overestimation of the 
performance that could be achieved in the field.

4.3.3. Gender independence

The goal of this experiment is to investigate possible gender biases in 
the classification models. To do so, we evaluated the performance of the 
best-performing models for Disruptive Situation Detection with gender-

specific data subsets. If such models performed significantly worse on 
either the female-only or male-only test sets compared to their per-

formance on the original, mixed-gender test set, that would indicate 
a possible gender-related bias. To achieve this, we curate two distinct 
test sets: the Female-Only Test Set, consisting exclusively of scenarios 
featuring female actors, and the Male-Only Test Set, containing scenar-

ios exclusively involving male actors. Given the limited availability of 
datasets encompassing both genders, namely RAVDESS and CREMA-D, 
we conduct this experiment exclusively on these two datasets.

4.3.4. Noise robustness

In the public transport domain, developing SER models that are ro-

bust to noise is crucial. To have a more objective evaluation of our use 
case, we experiment with a noisy test set. In particular, we create a 
noise-corrupted RAVDESS test set following the procedure described in 
Section 4.1.4, and use it to evaluate models that were trained on the 
original RAVDESS dataset.

4.3.5. Multiple voices

To test the effectiveness of our approach in detecting emotional 
changes in multiple voice conditions, we conduct an experiment ex-
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ploiting the models that obtained the best performance in Section 4.3.2.

Table 4

Best three performing CNN and SVM models for each da

D and the Accuracy (A). Models are sorted on the F1-sc

denote performance improvement with respect to the ma

Dataset Classifier MFCCs RMSE Noise A

CNN 25 ✓ 0.9

CNN 25 0.8

RAVDESS CNN 25 ✓ 0.8

SVM 25 0.7

SVM 25 ✓ 0.6

SVM 25 ✓ ✓ 0.7

CNN 25 0.6

CNN 25 ✓ 0.6

TESS CNN 25 ✓ 0.6

SVM 12 ✓ 0.5

SVM 25 ✓ ✓ 0.5

SVM 12 0.5

CNN 25 ✓ ✓ 0.5

SVM 25 ✓ 0.5

CNN 12 ✓ 0.6

SAVEE CNN 25 0.5

SVM 12 ✓ 0.5

SVM 12 ✓ 0.5

CNN 12 ✓ ✓ 0.8

CNN 12 ✓ 0.8

CREMA-D CNN 25 0.8

SVM 25 ✓ 0.8

SVM 25 ✓ ✓ 0.8

SVM 12 ✓ ✓ 0.8
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4.3.6. Ensemble

To improve performance and to evaluate learning stability, we con-

sider a supervised ensemble setting (Akçay & Oguz, 2020, Dong et al., 
2020). In particular, we take the three best models of the Disruptive 
Situation Detection experiment and aggregate their predictions via a vot-

ing schema. As voting schema, we consider majority voting and averaged 
probability. The former chooses the class that the majority of the models 
have predicted. For the latter, we pick the maximum class probabil-

ity averaged over the models. Additionally, we limit ensemble voting 
to confident models only. We experiment by excluding models that 
output probability scores in the [0.4, 0.6] and [0.3, 0.7] ranges. Apply-

ing average probability voting schema to CNNs is straightforward as 
they output a probability score via the sigmoid activation function. In 
contrast, we rely on Platt scaling (Platt, 1999) to compute probability 
scores for SVMs.

5. Results and discussion

This section explains the performance metrics (Section 5.1) em-

ployed to evaluate our experiments and presents our results, with a 
specific focus on Disruptive Situation Detection (Section 5.2), Gender In-

dependence (Section 5.3), Noise Robustness (Section 5.4), Multiple Voices

(Section 5.5), and Ensemble (Section 5.6) scenarios.

5.1. Performance metrics

The result of the experiments can be expressed as the number of 
positive instances that are correctly classified (True Positives TP), those 
that are misclassified as negatives (False Negatives FN), the correctly 
classified negatives (True Negatives TN), and those that are misclassi-

fied as positives (False Positive FP). Accuracy is defined as the percent-

age of correctly classified instances (Equation (1)). The F1 score on the 
positive class is instead defined as in Equation (2).

𝐴 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
(1)

𝐹1 = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

(2)

We compute the F1 score on the disruptive class to evaluate the 

performance of individual models. A model with a high F1 score on 

taset. We report the F1-score for the disruptive class

ore in descending order. The Improvement columns 
jority baseline.

A Improvement F1 (D) F1 (D) Improvement

0 +0.37 0.91 +0.21

9 +0.36 0.90 +0.20

9 +0.36 0.90 +0.20

3 +0.20 0.75 +0.05

8 +0.15 0.68 -0.02

0 +0.17 0.68 -0.02

8 +0.11 0.77 +0.04

7 +0.10 0.76 +0.03

6 +0.09 0.73 +0.00

7 +0.00 0.73 +0.00

7 +0.00 0.73 +0.00

7 +0.00 0.72 -0.01

2 +0.02 0.67 +0.00

7 +0.07 0.62 -0.05

0 +0.10 0.50 -0.17

2 +0.2 0.43 -0.24

0 +0.00 0.40 -0.27

5 +0.05 0.22 -0.45

7 +0.07 0.92 +0.03

7 +0.07 0.92 +0.03

5 +0.05 0.91 +0.02

0 +0.00 0.89 +0.00

0 +0.00 0.89 +0.00

0 +0.00 0.89 +0.00
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Table 5

Performance comparison of best three CNN and SVM Models on Disruptive Class 
(D) F1 Scores, differentiated by gender-specific test sets (Males - M and Females 
- F).

Dataset Classifier MFCCs RMSE Noise
F1

(D)

F1 (D)

M

F1 (D)

F

CNN 25 ✓ 0.91 0.94 0.89

CNN 25 0.90 0.90 0.89

RAVDESS CNN 25 ✓ 0.90 0.90 0.89

SVM 25 0.75 0.70 0.78

SVM 25 ✓ 0.68 0.55 0.79

SVM 25 ✓ ✓ 0.68 0.56 0.77

CNN 12 ✓ ✓ 0.92 0.92 0.92

CNN 12 ✓ 0.92 0.94 0.89

CREMA-D CNN 25 0.91 0.92 0.91

SVM 25 ✓ 0.89 0.89 0.89

SVM 25 ✓ ✓ 0.89 0.89 0.89

SVM 12 ✓ ✓ 0.89 0.89 0.89

the disruptive class can identify instances of disruptive behavior while 
minimizing false positives, which reduces the need for costly human 
intervention. For the sake of completeness, we also report accuracy.

5.2. Disruptive situation detection

Table 4 shows the three best-performing configurations for each 
classifier. We observe that CNNs yield the best performance in all 
four datasets. In particular, CNNs strongly outperform SVMs on the 
RAVDESS dataset, where they strongly outperform the baseline. On 
TESS and CREMA-D, their performance is comparable to the SVMs 
and to the baseline, denoting the challenging setup of these datasets. 
As for SAVEE, while CNNs achieve comparable outcomes to the base-

line, SVMs experience a significant drop in performance. A qualitative 
analysis confirmed that files within the disruptive class are not easily 
discernible from those in the non-disruptive category.

Regarding audio features, results do not show a clear winning con-

figuration over all datasets, but rather, specific combinations are pre-

ferred for each setting.

Similarly, our results show that data augmentation with noise-

corrupted data has almost no impact on model performance.

5.3. Gender independence

Table 5 shows that our experiment yields remarkably high F1 scores 
for both the female-only and male-only subsets in most cases. For some 
configurations, we observe differences between the two test sets, with 
CNNs performing slightly better on the male test set and the SVM 
trained on RAVDESS performing better on the female test set. How-

ever, our best-performing models yield consistent results across gender-

specific data, indicating robustness and gender-independence.

5.4. Noise robustness

We compare the SVMs and CNNs that scored best on RAVDESS 
by testing them on our new synthetic test set and present the re-

sults in Table 6. As expected, the CNN model trained with additional 
noise-corrupted recordings is the best performing one, losing at most 4 
F1-score percentage points. In contrast, CNNs trained without data aug-

mentation lose up to 17 F1-score percentage points. Conversely, noise 
affects SVMs less, losing only a few percentage points. It is important 
to remark that these noisy test samples have been created through the 
same procedure that was applied to create noisy training samples. Thus, 
we have no guarantee that a model trained on such noise-corrupted data 
7

will be robust to other types of noise.
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Table 6

Results of the Noise Robustness experiments on the best-performing CNNs 
and SVMs models that are trained on RAVDESS. The reference test set for 
these experiments is the noise-corrupted RAVDESS test set. The two Δ
columns report the deterioration with respect to the experiments on the 
original RAVDESS test set in terms of Accuracy (A) and F1-score for the 
disruptive class. In bold, the best-performing model.

Classifier #MFCC RMSE Noise A Δ-A F1 Δ-F1

CNN 25 0.74 -0.15 0.73 -0.17

CNN 25 ✓ 0.86 -0.04 0.87 -0.04

CNN 25 ✓ 0.76 -0.13 0.76 -0.14

SVM 25 0.65 -0.08 0.70 -0.05

SVM 25 ✓ 0.68 -0.00 0.67 -0.01

SVM 25 ✓ ✓ 0.67 -0.03 0.66 -0.02

Table 7

Results of the Multiple Voices experiments on the best-

performing CNNs and SVMs models that are trained on 
RAVDESS, TESS, SAVEE, and CREMA-D. The table in-

cludes information such as the number of overlayed audio 
files (N.OAF) and the number of samples (D/ND). Addi-

tionally, the table provides a breakdown of the F1 score 
based on different categories (D and ND) and the F1 score 
on the disruptive class obtained with the best model on 
the original test set composed of single files (SF).

Dataset
N.

OAF

N. Samples

(D/ND)

F1

(SF)

F1

(D)

F1

(ND)

2 32/28 0.91 0.89 0.84

RAVDESS 5 12/11 0.91 0.83 0.71

10 6/5 0.91 0.92 0.88

2 400/300 0.77 0.75 0.29

TESS 5 160/120 0.77 0.73 0.05

10 80/60 0.77 0.73 0.0

2 30/30 0.67 0.38 0.67

SAVEE 5 12/12 0.67 0.25 0.63

10 6/6 0.67 0.50 0.75

2 24/6 0.92 0.90 0.44

CREMA-D 5 9/2 0.92 0.95 0.67

10 4/1 0.92 0.89 0.0

5.5. Multiple voices

Table 7 shows that in all experiments, except for SAVEE, the perfor-

mance is comparable to that achieved with single voices. This demon-

strates the robustness of our approach against multiple overlapping 
voices.

5.6. Ensemble

As can be observed in Table 8 the averaged probability is the best-

performing voting strategy, obtaining slightly better scores than the best 
single model. We also notice that excluding models based on probabil-

ity confidence ranges leads to lower model performance. This seems to 
indicate that even limited-confidence predictions provide a useful con-

tribution to the ensemble. On average each network is excluded in 21%
of the prediction, and never in more than 31% of the cases, indicating 
that models are often fairly confident in their predictions.

6. Conclusions

We present a novel approach for the detection of disruptive situa-

tions in the domain of public transport, framing the problem as an SER 
task. We analyze popular datasets for SER, highlight the limits of pre-
vious approaches for training unbiased classifiers, and re-define data 
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Table 8

Ensemble models performance on the RAVDESS dataset. In each prediction, models 
that output a probability within the exclusion range are not considered. Column 
Average Exclusions reports the average number of predictions from which the models 
are excluded.

Strategy Exclusion range Average Exclusions(%) Accuracy F1

Majority Voting None 0 0.90 0.91

Majority Voting [0.4-0.6] 21 0.89 0.90

Majority Voting [0.3-0.7] 21 0.89 0.90

Averaged Probability None 0 0.92 0.92

Averaged Probability [0.4-0.6] 21 0.88 0.89

Averaged Probability [0.3-0.7] 21 0.88 0.89
splitting as a solution. To overcome the scarcity of real data for the do-

main of interest, we introduce a data-augmentation process to obtain 
realistic domain-specific recordings. Our experiments confirm that data 
augmentation is particularly beneficial in some cases. Furthermore, we 
explore the use of ensemble to obtain better performances and evaluate 
the models on noisy data. We find that our SVM models are more robust 
against noise than CNNs and that ensemble settings have limited impact 
on the system’s performance. Importantly, the performances of our best 
models on male-only/female-only datasets are comparable, suggesting 
model fairness.

The overall performance results show that simple classifiers like 
SVMs and CNNs are capable of achieving satisfying performance for 
SER on multiple datasets when relying on informative audio features 
like MFCCs and RMSE. We shall however remark that while the SVM 
may be more suitable for small samples, its effectiveness may diminish 
in real-world situations with large-scale training data, as the complexity 
of the model and computational demands increase. This is a limitation 
that should be considered in future studies using larger datasets.

Although our employed architectures are less sophisticated than 
current state-of-the-art models, we posit that, for the purposes of our ap-

plication, simplicity is an advantage. The reason is that in our envisaged 
real-world deployments, such systems ought to seamlessly integrate into 
edge systems where computing resources may be limited.

These results show that the formulation of disruptive situation de-

tection as an SER task is a promising research direction that deserves 
further investigation and an investment in datasets for validation.

With respect to previous literature (Laffitte et al., 2016), which re-

stricted disruptive situation detection to a scream recognition task, we 
address disruptive situation detection in a broader sense, paving the 
way to the development of intelligent systems applicable in more ver-

satile real-life contexts. As far as limitations, our study does not address 
multi-cultural, multi-lingual scenarios, and has not been tested in real-

world deployments. However, these shortcomings are mainly due to the 
lack of reference data.

As future work, we plan to train and evaluate models on differ-

ent dataset combinations following a transfer learning formulation, 
similarly to what has been proposed by Gerczuk et al. (2023). For this 
purpose, a re-annotation process might be considered to overcome an-

notation inconsistencies between datasets (Abbaschian et al., 2021). 
We also intend to investigate advanced techniques for feature extrac-

tion and more sophisticated model architectures, such as attention-

based models (Galassi et al., 2021). Furthermore, we intend to address 
the problem of multilingualism by experimenting on datasets such as 
BAUM-1 (Zhalehpour et al., 2017) or SUBESCO (Sultana et al., 2021). 
Additionally, we plan to explore adaptive speech features in an attempt 
to increase our SER performance, as suggested by Wu et al. (2018). Fi-

nally, we believe that the creation of a real-world dataset is needed 
in order to enable progress in the field of public transport safety and 
security. This would enable testing advanced solutions in a real-world 
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setting, as proposed by Wu et al. (2015).
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